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Plane-parallel and axisymmetric flows of a chemically active mixture in which 

only a single reaction takes place are considered on the assumption that the equi- 
librium and the frozen speeds of sound in the medium are nearly equal. The 

asymptotic system of equations which in the nonlinear theory of small perturba- 

tions is valid in the range of transonic speeds is used. An exact particular solu- 
tion of these equations is derived, which makes it possible to trace the process 
of shock wave onset and development, If the particle velocity is higher than the 

equilibrium but lower than the frozen speeds of sound, the shock waves are totally 
dispersed, as in the case of one-dimensional flows. Waves containing discontinu- 
ities with incomplete dispersion are generated, if the stream velocity exceeds 
the frozen speed of sound. 
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Flows of chemically active gas mixture in which the equilibrium and the fro- 
zen speeds of sound were close to each other were fist considered by Na~~~tano 

[I]. Using the nonlinear theory of small perturbations and assuming that at any 

point of space the particle velocity does not much differ from both of these speeds 

of sound. he derived an asymptotic system of equations which is satisfied by the 

parameters of the mixture. Further development of Napolitano’s method appears 

in Y2. 31. 

1, The attictfy tronronic mode. We assume, as in [l-3], that only a single 
reaction takes place in the mixture whose composition is defined by the single parame- 
ter q called the completeness of reaction. We denote the specific volume, entropy and 
internal energy by V, s and e , respectively, and the affinity and rate of the chemical 

reaction by Q and y , respectively. In this notation the expressions for thermodynamic 
derivatives are Se Se 

er1= @ v,s’ ( ) 
era = ( ) aqaV 5* J-11= - (g),,v 

We define the difference between the equilibrium a, and the frozen af speeds of sound 

by a small parameter Q, and denote the basic equilibrium stateofgas on which small 

perturbations are imposed, by subscript m. The particle velocity modulus and the pres- 

sure of gas are denoted, res~ctively,by ?.J and p . In conformity with [l-3] for a saictiy 

transonic mode in which the particle velocity at every point of space is close to both 

speeds of sound, we have 

e12- = e, p”e’ Urn - a,, = E, zvmoem, urn - afJo = ~,2V,h (1.1) 
yoo 1203' 

where the order of magnitude of dimensionless constants &, , oeoJ and O+ is equal 

unity. 
Let vX and ZJ, be projections of the velocity vector on the I - and T-axes of a Carte- 

sian or cylindrical system of coordinates, L be a characteristic dimension along the 

s-axis, and a and A denote small parameters. We introduce dimensionless variables 

defined by formulas 
x = iX, r = krf, u, = v, (* + ELM,‘), v, = EALW,. (1.2) 

The deviations of density p = 1iV, pressure p, and of equilibrium a, and frozen at 

speeds of sound from their related values in the basic uniform stream are proportional to 

a. Thus 
P = pm (I + ep’), p = PC0 (1 -t &P’) (1.3) 

a, = a,, (1 + ea,‘), af = a+ (1 + f3af’) 

and the perturbed completeness of reaction, chemical affinity and the rate of reaction 
must be of the order of the product of small parameters o and E, 

Q = qm(i + %q’), Q = E&=- Q’, 
QCJJCO 

~=E&+!-f 
Tq (1.4) 

where z is the relaxation time. We introduce two mcue dimensionless quantities 

related to that time. 
It remains to substitute formulas (1.1) - (1.4) into the equations to which motions of 

the relaxing mixture are subordinated. We retain in all equations only the principal terms, 
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neglecting terms of higher order of smallness. and follow the asymptotic analysis presen- 
ted in [3]. For convenience we omit the primes at all dime~ionle~ quantities and de- 
fine small parameters by the following relationships: 

2em, Z Aa ZZYZ 2a,Q P2meL O” 
&P2,e,, ,C 

with 

In the considered approximation we have for the thermodynamic coefficient 

Using the results given in f3], we represent the system of asymptotic equations defining 
the perturbed noneq~libri~ flow of mixture in the form 

In the case of plane-parallel motions the parameter Y = 1, while in that of axisym- 
metric motion Y = 2. The system of quasi-linear equations (1.5) is for V, > ‘is - CT 
of the hyperbolic kind. 

Since the remainder 
o,, - &a, = -J.. ~:~Lv 

2 LX& ,D”, 

this condition means that the velocity of gas particles exceeds the local frozen speed of 
sound. Directions of the three characteristics are defined at every point by the relation- 
ship 

(1.6) 

Introducing in the analysis the new unknown function ZL = V, + o, from system (1.5) 
we obtain for its determination the single third order equation 

containing only one constant parameter 2, which depends on the properties of the relax- 
ing mixture. 

2, Trannformatfon to I~I ordfnrry dffferentfal equatfon, Equation 
(1. ‘7) is more convenient for further operations than system (1.5). We seek its solution 
in the form 

u=4 _% 2 2 
( ) c r - 2v % I(5), g = c2 - dr2 (2.1) 

where c and C$ are arbitrary constants and function f (g) is taken to be the integral of 

the third order ordinary differential equation 

f EL+. (gpz&~~ _I#&-$- (3%-j) gg--g 2 P2.2t 
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Solutions of form (2.1) were often used for defining flows of inert gas. A stream with 
local supersonic zones at the walls of a Lava1 nozzle was investigated in [4, 51 on the 
assumption of absence of dissipative processes. The use of formulas (2.1) for determin- 
ing the velocity field of an inviscid gas in another off-design mode in a nozzle with the 
supersonic region occupying the whole throat and containing downstream a compression 
shock was shown in [6]. The possibility of extending these solutions to the analysis of 
motions of a viscous and heat-conducting gas of both kinds was indicated in fl, 81, The 
transformation of a dissipating gas stream into a perfect inviscid ffow was investigated 
in [S] by means of passing to limit. 

It will be evident from the subsequent analysis that integral (2.1) with function I’ (t) 
~tis~~g Eq. (2.2) makes it possible to trace the onset and development of shock waves 
generated in flows of a chemically active mixture. 

The integration of Eq, (2.2) yields 

a(P+f)~2-(“-f)~+2(~)z-f-~E-~an (2.3) 

( a = lc, P=&) 
where A is an arbitrary constant. For convenience we assume that constants c and d 
are positive, which implies that constants a and fi are also positive. 

To investigate the properties of the nonlinear equation (2.3) we first determine the 
form of functions Q and 0, - Sub~ituting the expression 

into the second equation of system (1.5), we obtain 

ag+h=f 

Eliminating from the analysis function h’whlch for t --f - 00 increases exponentially, 
we obtain from this 

h= -&I (- $xp (;)jdE (2.5) 

Let us determine the transverse component of the velocity vector. The last equation 
of system (1.5) implies that 

It remains to determine constants B1 and Ba. To do this we use the different expressions 
for the derivative dq / dx which are obtained from the first and second equations of sys- 
tern (1.5). The substitution into the right-hand side of the second of these equations for- 
mulas (2.3) and (2.4) for V, = u - o and q , respectively, yields 

2 
QmPcoell 00 aq -=-.-- 

Pmelz m ax 
2v +$ (h - f) 

Taking into account formula (2.6), from the first equation of system (1.5) we have 
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where the right-hand side must depend on the combination of g independent variables 
of 5 and r. This condition is satisfied only for 

&=-$&)” 

Equating the above two expressions for dq / do, we obtain 

g~=a?~RI+2~~+(u+P)f-~(P+f)~ (2.7) 

Recalling formula (2.5) for function h and differentiating expression (2.7) we obtain 

Eq. (2.3) with (Zad + v@B,)/(vd) in its right-hand side. Hence it is obvious that 

& z’s1 ($)‘(A - 1) 

Let us also note the form of function Q, which defines the extent of deviation of the 
state of mixture from complete thermodynamic eq~~b~urn. It was shown in p] that 

in the considered approximation 

$3, ell m 
Q= p 4+eII~u~=2Yel,,$th-_f) (2.8) 

Let us revert to Eq. (2.3). Th: following two particular integrals play an important part 
in the analysis of its solutions : 

f = @l,& + a&,2, al,%=+ vq), bz,% = $g (2.9) 

The variation of the chemical reaction rate affects coefficient 1 and with it also cc. 

For GL = 0 formulas (2.9) define the motions of an inviscid inert gas [4 - 61. However 
the presence in the definition of function f of a term proportional to a is unimportant, 

since it can be made to vanish by simply altering in the input equations (1.5) and (1,7) 

the origin of the z-coordinate. This can be also achieved by setting constant A = 1 , 

when b1,2 and constant B, vanish, which corresponds to the case when the velocity field 

of an inert gas flow is analyzed. Let us set d = 1. Then the integral f = orE repre- 

sents a stream whose velocity field at the inlet of a Lava1 nozzle is subsonic and in the 

neighborhood of the nozzle critical cross section passes through both the equilibrium 
and the frozen speed of sound. 

Let us derive the initial conditions for integrating Eq. (2.3) . The solution which 

determines a chemically active mixture must obviously be at infinity upstream, i. e. 
for E + -00, close to the solution for an inviscid inert gas. However all operation 
modes of a nozzle through which flows an inert gas are defined by relationships where 
for E-+ --co tend to integral (2.9) with a = a, [4 - 61. It follows from this that ini- 
tial data for the integration of Eq. (2.3) must be chosen for considerable negative values 

of E in the neighborhood of f = a,& To obtain a more exact idea of the asymptotic 
behavior of the sought solution we set 

f = oE + x (8, a = 4 (2.10) 

and, assuming that the quantity 1~ (E) is small in comparison with & , we linearize Eq. 

After the substitution of q = - (fi + a$) / ( aa ) f or t h e independent variable, the last 
equation can be written as 
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which is the canonical form of the unspent hy~rgeome~ic equation [lo], Using the 

conventional notation for such equations, we write its solution as 
e-1 P 

x=c,cr, ( a-l 2a--1 p 
-, ---; 

P a CYU 
9) +Cai-n+no q;, i+$; q) (2.lf) 

It remains to determine rhe relation between constants C, and C,. This can be achie- 

ved by using the asymptotic form of hypergeometric functions for q -+ i 00. For 

a> 0 and 5 -+ - 00 the variable rl-+ % M), Hence [lOI 

where I’ denotes Euler’s gamma function, and G (li a, 1 - [$ / (au); TV) represents 
an asymptotic series in inverse powers of ?J, which for q -+ co tends to unity, To ob- 
tain a solution which tends to vanish at infinity it is necessary to equate the expression 

in brackets to zero. This yields the relation between C, and Cz, Formula (2.11) now 
becomes 

The linear combination of the by~rgeome~lc functions appearing in brackets is propor- 
tional to the so-called Y -function [lo], hence for 11 -+ -j- 00 and g -+ - co we ob- 
tain a-1 U-1 a-1 -- -- 

X=ol a cq u -+...=G(-g)--b-+.** (2.13) 

U-1 

c = cc%, 
I’ 2 ( 1 au 

r _ a-1 ( -+A) a 

The constant C, in formu~s (2.12) and (2.13) remains arbitrary and on is depend initial 
values of function f (E). in the asymptotic expansion of x (g) the exponent of the prin- 

cipal term is a--l -__=:~“;:;;;;<o 
n 

hence the second term in the right-hand part of equality (2.10) is in fact considerably 

smaller than the first when % -+ - oc. It can also be shown that formula (2.13) repre- 

sents the principal term of the asymptotic expansion of the correction %_ (g) in the case 
of motion of an inert gas, which is governed by Eq. (2.3) with CC = 0. 

3. COlltillUOUt fiOW6. Let us elucidate the meaning of the particular value of 
f=-pf h’hh or w IC t e coefficient at the leading derivative in the ordinary differential 

equation (2.3) vanishes, Recalling formulas (1.6) we write the equation which specifies 
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the slope of characteristic curves 

(32=4(;)2 r”-2Y$f(& (3.1) 

We seek its solution in the form E == %, = const , i.e. x = c-l (5, + 6%“). It follows 
directly from Eq. (3.1) that f (EC) = - /S. Thus the intersection along any integral 

curve defined by Eq. (2.3) with the straight line f = - /3 implies the intersection of 
a characteristic in the physical space. 

Let us determine qualitatively the properties of the considered integral curves whose 
asymptotic behavior for E -+ - 00 is defined by expansion (2.13). First, we set the 

constant C > 0. It follows from f~mula 

df 
%%--I -- 

dj=%+ y2(-5) a’ f... 

for the derivative that there exists an interval - 00 < E < $, in which df /dE>q. 
It can be readily shown that when condition f (&,) > -. p is satisfied, the slope ot the 

integral curve defined by Eq. (2.3) at point E = & must remain greater than that of 

the straight line f = a1E . 
Let us assume the contrary, i.e. that df (to) / dE = a,. Then @f &) / dE2 < 0. Fur- 

thermore, obviously 
f (L,) = a,b -i ab, b>O (3.2) 

Substituting these values of function f and of its first derivative into Eq, (2.3) we obtain 

(a+fg$= b% (3.3) 

The second derivative d2f f&J/@ determined by this equation is positive, The derived 
contradiction proves the above statement. 

Let some integral curve defined by Eq, (2.3) intersect the straight line f = - b at 

a point where E -=: EC, and its slope and curvature remain finite, We have 

fi+l+p)++l/(l-p)“+~(l+~) 
dS, 

(3.4) 

The curve of derivative df J d[, is shown in Fig. 1, where 

~*=-++;(l-g)zjr, ~=~(I+~) 

We denote by g1 the abscissa of the intersection point of straight lines f = alti, and 

f = - j3. Obviously & = - b / a, > 0. For EC = gr from formula (3.4) we have 

($), = ai, (-$-),=az+~ (3.5) 

The first of these expressions for derivatives relates to the straight line f = al& 
Let us prove that the integral curve defined by Eq. (2.3) with asymptotics (2.13) can- 

not reach the straight line f = - fi , when E --f - 00 and C > 0 . If it did intersect 
this line at some point where g = E,, then by virtue of the previous proof we would have 
5, > & and a, < df i dt, < 0. Since we have to take in Fig. 1 the lower branch of 
the curve shown there, where E, > !& , we find a ~n~adi~tion with the initial estimate 

df I &, -c a,. 
Let us now set in the asymptotic expansion (2.13) the constant C ( 0. Then in some 
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interval - 00 < g < Es the slope of the considered integraf curve must be smaller 
than that of the straight line f = a&. If f (go) > - 0, then also at point where 

E I- &, the derivative df (E,,) / dE ( a,. 
As previously, the proof of this statement 

is derived by contradiction, i. e, by assum - 

ing that df (&,) / dE 7 a,. Then d”f (go) / 

dSz >, 0. Using the first of formulas (3.2) 
where the sign of constant h is to be re- 

versed, we again obtain formula (3.3) with 
a negative right-hand part. This leads to 

cc a contradiction in the computation of 
cP5 (5”) / @. 

The integral curve defined by Eq. (2.3) 

Fig. 1 
with asymptotics (2.13) and C ( 0 can 
intersect the straight line f : - 13 only 

at a right angle, since as just proved, at the intersection point EC ( E;, and df / d& < 

a,. Were the derivative df / d& to remain finite, it would have to be defined by the 
lower branch of the curve shown in Fig. 1. However for EC < gr that curve shows that 
df / @,, >a,, which implies that the slope of the considered integral curve becomes 

infinite when it reaches the straight line f -rz -- 8. 
The infinitely great value of the derivative df / &, for f (&) == - fi implies the 

onset in the physical space of infinitely great accelerations along the line which at each 
of its points has a characteristic slope. This line is the envelope of characteristic curves 

(111. Hence the integral curves defined by Eq. (2.3) whose asymptotic behavior for 
5 --f - 00 is specified by expansion (2.13) cannot be used for the determination of 

fields of real flows. 
Having established qualitatively the properties of Eq. (2.3) we can pass to its direct 

integration. Let us consider, as an example, the flow through a plane nozzle for which 

the constants are : v = j and aI =: - 1. Although the initial conditions for function 

f and its first derivative are defined by formulas (2.12) and (2.13), it is better to use the 

more exact asymptotic series 

(3.6) 

which are derived with the nonlinear terms in Eq, (2.3) taken into account. The results 

of computations are shown in Fig. 2. It was assumed that a -= 0.1, p = 0.25, and the 

coefficient C in formulas (3.6) was equal lo-‘, IO-“, 1O-3 and 10-s. The integral 

(2.9) for a ~1: a, and a = a2 is represented by the straight lines ac and bd, respectively. 
The values V, ( - CT correspond to the interval in which particle velocity is lower 

than the frozen and eq~librium speeds of sound. For -o < li’, <l/z - o the eqti- 
fibrium speed of sound limits the stream velocity from below and the trozen one provides 
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its upper limit. The values V, > ‘la - o correspond to the interval in which the par- 
ticle velocity exceeds both speeds of sound. The regions in which the velocity of the 

stream is contained within one of the 
three intervals are denoted in Figs. 3 

and 4 by letters A, B and C. 
The curves in the tf -plane provide 

the distribution of the perturbed velocity 
V, (z, 0) along the central streamline 

(the nozzle axis), and in conformity with 
equalities (2.1) 

uz(5, O)= -o-2Y$f(g) 

The curves in the half-plane f > 0 
relate to flows in which particles move 
along the central streamline at a velo- 

city lower than the equilibrium speed 

of sound, while in regions along the chan- 
nel walls they can accelerate to veloci- 

ties exceeding the equilibrium and the 

frozen speeds of sound. 

Fig. 2 

It will be seen that for f = - p 
function u, (5, 0) = I/z - G. Hence 
the integral curves of Eq, (2.3) which 

intersect the band -fi < f < 0 define flows at a velocity lower than the frozen but 
higher than the equilibrium speed of sound along the central streamline. The velocity 
of particles in such flows may exceed the first of the two speeds of sound at some dis- 

tance from the axis of symmetry. 

Both kinds of considered flows are continuous. 
Let us compare these flows with one-dimensional flows of relaxing mixture considered 

in detail in [3, 12, 131. The last of these papers contains some profound analysis of sta- 
bility of such flows. Geometric characteristics of inert gas flow are given below for 

comparison. 

b d 

Fig. 3 
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Curves lying in the half-plane f > 0 represent flows which have no analogs among 
one-dimensional flows. These flows are diagrammatically shown in Fig. 3, a. At con- 
siderable distances from the nozzle axis the stream passes first through the equilibrium 

and then through the frozen speed of sound. If instead of a relaxing mixture an inert 
gas is considered, these flows correspond to flows with local supersonic zones adjacent 
to the channel walls. 

The integral curve defined by Eq. (2.3) tangent to the axis f = 0 represents the limit 
flow in which regions where the particle velocity exceeds the equilibrium speed ofsound 

merge at the central streamline (Fig. 3, b). The presence of a chemical reaction results 
in that the limit flow has no particular character. As in the case of a viscous inert gas 

P - 21, the derivative au, (x, 0) / 8~ = 0 at the point of junction of regions with Q (E, 
r) > -0. The curve along which particle velocity reaches the equilibrium speed of 

sound has a cusp at the axis of symmetry. The corresponding limit flow of an inviscid 
inert gas is shown in Fig. 2 by the broken line aob. In such flow the derivative h, (x, 

0) / 8~ + 0 and is discontinuous at the junction point of local supersonic waves ; only 
when the acoustic line is straight the acceleration vanishes at its intersection with the 
axis of symmetry [14, 151. 

The stream field remains qualitatively unaltered when the perturbed velocity u~(s, u) 

exceeds -0. However for its maximum values close to the right-hand end of the interval 
-c 4 Vx (G 0) < 1/2 - c regions of relatively considerable gradients of the mixture 
parameters appear in the stream, as implied by the behavior of ctuves in Fig. 2. Such 

regions may be considered as shock waves with total dispersion, whose structure in one- 

dimensional flows was investigated in p, 12, 131. Although qualitatively the analogy 
is complete, however in the considered case the distribution of gas parameters inside the 

shock wave is somewhat more complicated, owing to the presence of the transverse com- 

ponent of the velocity vector. Flows for -0 < vX (5, 0) < l/Z - c are shown diagram- 
matically in Fig. 3, c. Passing from a relaxing mixture to an inert gas it is necessary to 

compare these with flows with local supersonic zones at the channel walls. A distinctive 

feature of relaxing mixture flows is that the curve along which particle velocity reaches 
the equilibrium speed of sound has two separate branches which connect the walls to the 

axis of symmetry. The neighborhood of the second of these branches, where the stream 
is rapidly decelerated, is a completely dispersed shock wave. 

Let us now consider the second limit case, when the regions of velocities exceeding 
the frozen speed of sound merge at the central streamline. Such limit flow is represented 

in Fig. 2 by the line consisting of the straight sol and the curve olb,. This flow is of a 
particular kind since point o1 corresponds to the characteristic of the input system of 

equations of gasdynamics along which various solutions interlock analytically. The re - 
gion of considerable gradients represents here a completely dispersed shock wave up- 

stream of which the particle velocity is exactly equal to the frozen speed of sound. A 
further property of the one-dimensional structure of such wave is the nonanalytic distri- 

bution of parameters of a relaxing mixture: the uniform stream is generally not subjected 

to the action of perturbations on one side of the point-characteristic, and is in the state 
of complete thermodynamic equilibrium p, 12, 131. At the merger of regions where 
uX (r, r) > Vz - c the derivative a~, (x, (I) / a~ # 0 and is discontinuous. As noted 
above, the velocity field of an inviscid inert gas with local supersonic zones merging 
along the central streamline has a similar property. A consequence of this property is 
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that the curve along which particle velocity reaches the frozen speed of sound intersects 
the axis of symmetry at a right angle and forms a cusp there (Fig. 3, d) . 

4, Incompletely dispersed shock waves. let us consider another off- 
design operation mode of a Lava1 nozzle, when the whole central part of the channel is 

taken by the zone in which particles move at a speed which exceeds not only the equi- 
librium, but also the frozen speed of sound. In the &plane the stream in the inlet part 

of the nozzle is represented by the straight line aoi, hence the distribution of mixtufe 

parameters remains the same as in the previously described limit case of merger along 

the axis of symmetry of zones in which the mass flow rate is higher than the frozen 
speed of sound. Since the passing across the straight line,f - -fi along line CZ.C is 

admissible, the complete flow /upstream of and/ up to the shock front is defined by the 

integral (2.3) with a = a, = - 1. Downstream of the compression shock the stream 

field is specified by function f which is determined by integrating Eq. (2.3). 

Let us derive the boundary >onditions which must be satisfied at the compressionshock 
in the considered here approximation. We shall carry out the analysis of Hugoniot’s 

equations by the method used by Busemann [ 161 in the case of transonic flows of an inert 

gas. We revert to the dimensional input equations and denote by subscript 1 the para- 
meters of gas on the side of the discontinuity line which faces the oncoming stream and 

the related parameters on the opposite side of this line by subscript 2. The first condi- 
tion 92 = 41 (4.1) 

is obvious ; it is the consequence of the instantaneous shock compression of gas. 
We denote by af the frozen Mach angle and by y the angle between the tangent to 

the shock front and the axis r; in a strictly transonic mode the latter is small. For any 

weak shock wave, with allowance for equality (4, l), we have 

In computing the Mach angle it is necessary to take into consideration that the stream 

velocity at infinity is close to both speeds of sound.In the first approximation we have 

af, sin qxf, = z = 1 + Pi--pa, U,-a 
mfb3 - - fm 

P,i’C DC% 
Expanding cos y into a series, from the last two formulas we obtain 

(4.2) 

This formula relates the angle of the shock front slope to the change in pressure across 
the shock. The third condition which is to be satisfied at the compression shock is that 

of continuity of the tangential component of the velocity vector 

YrJXl + Ui,l = YVr2 + v,2 (4.3) 

If 5 = x, (r) d e mes the discontinuity line, then f y = dzs / dr. Using this equality, 
we substitute formulas (1.1) - (1.3) into conditions (4.2) and (4.3). It was shown in 
[l - 31 that the pressure increase p- pm = - poov, (v, - v,). Passing to dimension- 
less variables (omitting primes in su~~c~pts), we now obtain 
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(4.4) 

Let us assume that the shock front has the shape of a second order curve E = E, = 

con&, i.e. 2 = C-l (g, f dr2). Taking this equality into account, from the first of 
conditions (4.4) we obtain 

f2 + fl = - q (4.5) 

while the second condition is identically satisfied, The quantity fl == a,&, hence the 

geometric locus of points which define the state of gas in the gf-plane downstream of 
the shock front is a straight line, shown in Fig. 2 by the dash line. 

Integration of Eq. (2.3) requires the prior determination of the derivative dfz / dF;- 
In the considered solution of equations of gasdynamics condition (4.1) has the form 

hs = hi. This and expression (2.7) for function h yields 

(4.6) 

This formula is not valid in the limit case of f2 = fl = - /3, when equality (3.5) is 
to be used instead of it. 

Let us show that investigation of the structure of the velocity field downstream of the 

flow does not result in any supplementary boundary conditions which it would be neces- 
sary to satisfy for integrating Eq. (2.3). For E + -t 00 the solution, which defines a 
chemically active mixture, must tend to the solution for an inviscid inert gas. However, 

all off-design modes of nozzle operation with an inert gas are specified by expansions 
which for ?, + + 00 asymptotically approach integral (2.9) with a = a2 161. This im- 
plies that for considerable positive E the solution of Eq. (2.3) must pass in the neighbor- 

hood of the straight line f = a&The last requirement is satisfied only when the asymp- 

totic representation of function f contains two arbitrary constants. 

The asymptotic properties of integral curves of Eq, (2.3) can be readily established 
by expressing function f in the form (2.10) where, clearly, a = us- The correction X 

is specified by formula (2.11). From this for g --t -j- 00 and 11 ---t - 00 we obtain 

a-1 

x+q)-‘-;-(++,~;_ 1 

aa + 

qT-(qfi 
b 

Fig. 4 

G 
r (dt$) 

r+ ( > I +... 
where the dots denote exponentially small terms. Since 
for a = a2 and any values of constants C, and C, 

the exponent 
a-i 

-_= l-v1+8/v 
a i+vi+8/v 

<O 

the second term in the right-hand part of formula 
(2.10) is considerably smaller than the first term. 
Hence both C, and C, are arbitrary. For the consid- 
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ered here solutions these constants are determined by numerical computation associated 

with the continuation of integral curves of Eq, (2.3), which are uniquely defined by the 

Cauchy formulas (4.5) and (4.6), into the region of considerable g. Curves presented in 

Fig. 2 relate to E, = 0.3, 0.5 and 0.7. 

For fi = n,g, the derivative dfi / dE = 1 + us + 2p i a is independent of the 
position of the compression shock. Behind its front the gradients of the relaxing mixture 

parameters are comparatively great, hence the compression shock with the adjacent 
downstream region can be treated as a shock wave with incomplete dispersion, Incomp- 

letely dispersed shock waves in one-dimensional flows have a qualitatively very similar 
structure p, 12, 131. 

Velocity fields in flows with dis~nti~~ties are shown in Fig. 4, a and b, where the 

compression shock is shown by heavy line, The first of these modes is characterized by 
a fairly weak shock wave behind whose front the perturbed velocity is -o < uX2 (zs, 0) < 

1/a - CT. In the second mode the compression shock intensity is considerably greater so 
that %2 (IS, 0) < - 0. Both these modes relate to inert gas flows in which the supersonic 
region occupies the whole of the Lava1 nozzle throat. Since for an inert gas dfi I dg = 
1 -k a2, hence in the flow region contiguous from behind to the discontinuity line gradi- 

ents of the relaxing mixture parameters are greater than in the case of an inert gas.The 
difference is explained by the chemical transmutation of mixture elements in the in- 
completely dispersed shock wave. 

We note in conclusion that for integrals f = aE and u = u,,s function (a = a (s - a). 
In conformity with the definition (2.8) of chemical affinity, we obtain from this 
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An earlier paper [l] gave the exact solutions for cylindrical and spherical waves, 

which made possible the solution of the problem of diffraction of waves due to 

a three-dimensional and a plane source. In the present paper the class of exact 

solutions is expanded significantly. The problem of diffraction of a wave due to 
a plane source by a semi-infinite plate is solved in a finite form. 

1. We know [l] that if a solution of the wave equation 

a%@ @co _+-_-- a2cD 
f3,z a?/ -?--=o &2 (1.1) 

is homogeneous in t and r = f~2 + 9% of degree - t/s and has the form @_B,~ (t, 

r’, e), then 4>_,,, (t + a (t” - P), r, 0) , where c1 = const and 6 = arctg (y / x), 
also satisfies (1.1). On the other hand, the relation connecting the homogeneous solu- 
tions of the wave equation which have different degrees, is well known. In particular, if 
O. and @, are solutions of (1.1) homogeneous in t and r of degrees 0 and n , respect- 
ively, and such that (C-p, / t”) \+r = @a It=r, then they are connected by the following 

Let us now set, in a purely formal way, the sum of the solutions of the wave equation, 
using the relation (1.2) 


